New 42-day free trial Get it now
Smarty

Go naming conventions

Smarty header pin graphic
Updated October 29, 2025
Tags
Smarty header pin graphic

It's been said that naming is one of the two hardest problems in computer science, along with cache invalidation and 'off-by-one' errors. (See what I did there?) Do you ever find yourself wondering what policies and practices you could adopt to make your life easier when reading code you wrote months ago? Or maybe you're up at night wishing you knew how to write code in such a way as to maximize adoption and convenience for your users? Well, look no further because we've anticipated the need, solved the problem, and now we're sharing our knowledge and wisdom at no charge, all out of the goodness of our hearts in this comprehensive, totally no-nonsense (nudge, nudge, wink, wink) style guide of Go naming conventions.

What you’re about to read might actually be helpful at some point, but we're not betting on it. Don't try this at home...actually, do try this at home--but maybe don't try it at work.

Table of contents

  1. Export local variable names
  2. Export local const names
  3. Export input argument names
  4. Export output arguments names
  5. Export reciever names
  6. Use single-character receiver names
  7. Use single-letter argument names
  8. Use double-letter names when you run out of single-letter
  9. Actually, use a generic receiver name like 'this',
  10. For added emphasis, use extended unicode characters for receiver names
  11. Always define import aliases
  12. Always export all imports
  13. Use single-letter (exported) import aliases
  14. In the spirit of #8 (above), use double-letter alias names when necessary

1: Export local variable names

package main

import "fmt"

func main() {
	Message := "Always export local variable names"
	fmt.Println(Message)
}

https://go.dev/play/p/8WVCvJpoa59

2: Export local const names

package main

import "fmt"

func main() {
	const Message = "Always export constants defined in functions"
	fmt.Println(Message)
}

https://go.dev/play/p/-0yZhHVNOOs

3: Export input argument names

package main

import "fmt"

func main() {
	Print("Always export input argument names")
}

func Print(Message string) {
	fmt.Println(Message)
}

https://go.dev/play/p/utRBMOMQNgj

4: Export output arguments names

package main

import "fmt"

func main() {
	Print("Always export output argument names")
}

func Print(Message string) (N int, Err error) {
	return fmt.Println(Message)
}

https://go.dev/play/p/n5cJhLDKNWk

5: Export reciever names

package main

import "fmt"

func main() {
	new(Printer).Print("Always export receiver names")
}

type Printer struct{}

func (Printer *Printer) Print(Message string) (N int, Err error) {
	return fmt.Println(Message)
}

https://go.dev/play/p/jEN-zkrjxdT

6: Use single-character receiver names

package main

import "fmt"

func main() {
	new(Printer).Print(
		"Use only the first letter of a type as the receiver for its methods (oh, wait...), " + 
			"and (per tip #5) make sure the receiver is exported")
}

type Printer struct{}

func (P *Printer) Print(Message string) (N int, Err error) {
	return fmt.Println(Message)
}

https://go.dev/play/p/0OqQLnPPcVd

7: Use single-letter argument names

package main

import "fmt"

func main() {
	new(Printer).Print("Use single-letter variables whenever possible")
}

type Printer struct{}

func (P *Printer) Print(M string) (N int, E error) {
	return fmt.Println(M)
}

https://go.dev/play/p/Q1jgH_6h2kT

8: Use double-letter names when you run out of single-letter names

package main

import "fmt"

func main() {
	new(Printer).Print("Use double-letter variables when you run out of single-letter variables")
}

type Printer struct{}

func (P *Printer) Print(NN string) (N int, E error) {
	return fmt.Println(NN)
}

https://go.dev/play/p/k3p9Hf49-20

9: Actually, use a generic receiver name like 'this', 'self', or 'me'

package main

import "fmt"

func main() {
	new(Printer).Print("On second thought, use a generic receiver name like 'this', 'self', or 'me'.")
}

type Printer struct{}

func (this *Printer) Print(NN string) (N int, E error) {
	return fmt.Println(NN)
}

https://go.dev/play/p/mSMZRqUy4qw

10: For added emphasis, use extended unicode characters for receiver names

package main

import "fmt"

func main() {
	new(Printer).Print("See what I did here? ;)")
}

type Printer struct{}

func (𝕥𝕙𝕚𝕤 *Printer) Print(NN string) (N int, E error) {
	return fmt.Println(NN)
}

https://go.dev/play/p/VPpSDOZYYjT

11: Always define import aliases

package main

import fmt "fmt"

func main() {
	fmt.Println("Always define import aliases")
}

https://go.dev/play/p/zCOnEoNtAf4

12: Always export all imports

package main

import Fmt "fmt"

func main() {
	Fmt.Println("Always export all imports")
}

https://go.dev/play/p/_fEPiypASub

13: Use single-letter (exported) import aliases

package main

import F "fmt"

func main() {
	F.Println("Use single-letter (exported) import aliases")
}

https://go.dev/play/p/e8JQAlSKpnZ

14: In the spirit of #8 (above), use double-letter alias names when necessary

package main

import (
	F "flag"
	FF "fmt"
)

func main() {
	F.Parse()
	FF.Println("Use double-letter alias names when necessary")
}

https://go.dev/play/p/U0ac86PHUsb

Subscribe to our blog!
Learn more about RSS feeds here.
Read our recent posts
Smarty customers avoid USPS rate limiting
Arrow Icon
TLDR: Smarty customers won’t feel a thing from the new USPS API restrictions because Smarty doesn’t depend on USPS’s real-time APIs to do address verification. We’ve always used our own, powerful, hyper-accurate data to back our tools and support client needs. While USPS is capping its address verification service at 60 requests per hour and retiring the legacy Web Tools API on January 25, Smarty keeps verifying addresses at full speed on our own infrastructure. We ingest USPS data updates monthly and run verification internally, so USPS API changes, rate limits, or even a temporary USPS outage don’t ripple into your workflows.
Provider data accuracy: Regulatory compliance and hidden network risks
Arrow Icon
Welcome to part one of our new blog series on provider location data—an exploration into the messy, high-stakes world of healthcare compliance, address accuracy, and network adequacy. To kick things off, we sat down with Dave Medlock, founder of Maven One Health and a contributing thought leader, to discuss why clean provider data is essential for achieving peak regulatory compliance and meeting requirements with ease, thereby avoiding serious consequences if it isn’t done correctly. Here’s what he had to say about understanding CMS, state DOIs, continuous audits, rosters, data decay, messy inputs, and the future of address data itself.
Always on; always Smarty: High availability design and engineering best practices
Arrow Icon
When the digital world falters, our goal is simple: stay steady for our customers. At Smarty, reliability isn’t a bragging point, but rather a promise. We’ve built a platform designed to keep running even when others stop, using a vendor-agnostic, redundant infrastructure grounded in engineering best practices that weather disruptions with quiet consistency. Our customers depend on uninterrupted address data services. And, we take that trust seriously. And because we trust you, we’re offering a 42-day free trial on every product.

Ready to get started?